Finsler Conformal Lichnerowicz-Obata conjecture
نویسندگان
چکیده
منابع مشابه
Projective Lichnerowicz-Obata Conjecture
We solve two classical conjectures by showing that if an action of a connected Lie group on a complete Riemannian manifold preserves the geodesics (considered as unparameterized curves), then the metric has constant positive sectional curvature, or the group acts by affine transformations.
متن کاملLichnerowicz and Obata Theorems for Foliations
The standard Lichnerowicz comparison theorem states that if the Ricci curvature of a closed, Riemannian n-manifold M satisfies Ric (X,X) ≥ a (n − 1) |X| for every X ∈ TM for some fixed a > 0, then the smallest positive eigenvalue λ of the Laplacian satisfies λ ≥ an. The Obata theorem states that equality occurs if and only if M is isometric to the standard n-sphere of constant sectional curvatu...
متن کاملAn Intrinsic Approach to Lichnerowicz Conjecture
In this paper we give a proof of Lichnerowicz Conjecture for compact simply connected manifolds which is intrinsic in the sense that it avoids the Nice Embeddings into eigen spaces of the Laplacian. Even if one wants to use these embeddings this paper gives a more streamlined proof.
متن کاملOn the conformal group of Finsler manifolds
We generalize to the Finsler case, the Lelong-Ferrand-Obatta Theorem about the compactness of conformal groups of compact Riemannian manifolds, except, the standard sphere.
متن کاملConformal change of special Finsler spaces
The present paper is a continuation of the foregoing paper [16]. The main aim is to establish an intrinsic investigation of the conformal change of the most important special Finsler spaces. Necessary and sufficient conditions for such special Finsler manifolds to be invariant under a conformal change are obtained. Moreover, the conformal change of Chern and Hashiguchi connections, as well as t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2009
ISSN: 0373-0956,1777-5310
DOI: 10.5802/aif.2452